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Abstract. Ice clouds, so-called cirrus clouds, occur very frequently in the tropopause region. A

special class are subvisible cirrus clouds with an optical depth lower than 0.03. Obviously, the ice

crystal number concentration of these clouds is very low. The dominant pathway for these clouds is

not known well. It is often assumed that heterogeneous nucleation at solid aerosol particles is the

preferred mechanism although homogeneous freezing of aqueous solution droplets might be pos-5

sible. For investigating subvisible cirrus clouds as formed by homogeneous freezing we develop a

simple analytical cloud model from first principles; the model consists of a three dimensional set of

ordinary differential equations, including the relevant processes as ice nucleation, diffusional growth

and sedimentation, respectively. The model is integrated numerically and is investigated using theory

of dynamical systems. We found two different states for the long-term behaviour of subvisible cirrus10

clouds, i.e. an attractor case and a limit cycle scenario. The transition between the states constitutes

a Hopf bifurcation and is determined by environmental conditions as vertical updraughts and tem-

perature. In both cases, the microphysical properties of the simulated clouds agree reasonably well

with simulations using a complex model, with former analytical studies and with observations of

subvisible cirrus. In addition, the model can also be used for explaining complex model simulations15

close to the bifurcation qualitatively. Finally, the results indicate that homogeneous nucleation might

be a possible formation pathway for subvisible cirrus clouds.

1 Introduction

Clouds consisting exclusively of ice crystals, so-called cirrus clouds, are frequently found in the

tropopause region in the extratropics. Satellite observations show frequencies of occurrence up to20

40% in the extratropical storm tracks and upto 60% in regions of tropical convection (Stubenrauch

et al., 2010). Cirrus clouds influence the energy budget of the Earth-Atmosphere system like other

clouds by reflecting and scattering incoming solar radiation (albedo effect) and by absorbing and

re-emitting thermal radiation (greenhouse effect). In contrast to liquid clouds the net effect of cir-

rus clouds on the total energy budget is not known yet, although usually a positive net effect is25

assumed (Chen et al., 2000). Since the formation of ice crystals requires high supersaturation (e.g.,
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Koop et al., 2000; Hoose and Möhler, 2012) and diffusional growth of ice crystals is quite slow in

the low temperature regime (T < 235K) cirrus clouds usually are far away from thermodynamic

equilibrium. Thus, in contrast to liquid clouds, which usually coincide with their (super-)saturated

environment, there can be a continuous transition from clear air over very low ice crystal number30

concentrations to thick cirrus clouds with high mass and number concentrations. A special class of

cirrus clouds constitute the so-called subvisible cirrus clouds (SVCs), which are usually defined by

an optical thickness τ < 0.03 (Sassen and Dodd, 1989). These clouds are difficult to detect; usually

remote sensing techniques as LIDAR or occultation observations (e.g., Wang et al., 1996) are used

to detect these very thin cirrus clouds. Only few in situ measurements of subvisible cirrus clouds are35

available, suggesting very low values in ice crystal number concentrations (e.g., Froyd et al., 2010;

Kübbeler et al., 2011). Global observations from satellites (Wang et al., 1996; Stubenrauch et al.,

2010; Hoareau et al., 2013) as well as observations with stationary LIDAR systems (e.g., Sassen

and Campbell, 2001; Hoareau et al., 2013) show frequencies of occurrence of about 10–20% in the

extratropics; in the tropics the frequency of occurrence is much higher (up to 50%, see e.g. Wang40

et al., 1996). For these subvisible clouds, a net warming is almost certain, since the albedo effect is

almost negligible. Our knowledge about subvisible cirrus clouds is quite limited. Since the ice crystal

number concentration in SVCs is very low, the question about the dominant formation mechanism is

still pending. In the cold temperature regime (T < 235K) two different formation mechanisms are

generally possible, namely heterogeneous nucleation at solid aerosol particles (Hoose and Möhler,45

2012) and homogeneous freezing of aqueous solution droplets (Koop et al., 2000). For subvisible

cirrus Kärcher and Solomon (1999) claimed that both nucleation mechanisms might be possible; in

contrast, Jensen et al. (2001) and Froyd et al. (2010) clearly suggested that the dominant mechanism

should be heterogeneous nucleation. However, analytical investigations by Kärcher (2002) indicated

that also homogeneous nucleation might be possible, although in this study sedimentation of ice50

crystals was not explicitly included in the model.

In the present study we focus on the formation of SVCs by homogeneous freezing of aqueous

solution droplets (short: homogeneous nucleation). We study the formation and evolution of SVCs

in an air parcel, which is lifted in slow vertical upward motions (w ≤ 0.05ms−1), as typical for syn-

optic scale motions in the extratropics (e.g. along warm fronts, see Kemppi and Sinclair, 2011) or in55

slow ascent regions in the tropics, as e.g. driven by Kelvin waves (Immler et al., 2008). We include

the relevant processes for ice microphysics, i.e. ice nucleation, ice crystal growth due to diffusion of

water vapour and sedimentation of ice crystals, respectively. The model is developed on the basis of

an evolution equation for mass distributions of ice crystals, including description of microphysical

processes based on former work (Spichtinger and Gierens, 2009). However, for using the powerful60

theory of dynamical systems for analysing the model, we make use of some appropriate simplifi-

cations in order to obtain an autonomous system of ordinary differential equations; the variables of
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the systems are ice crystal mass and number concentration, respectively, as well as relative humidity

with respect to ice.

In section 2 we describe the development of the model, as derived from a more general approach65

for mass distributions. The results of the numerical integration as well as the mathematical analy-

sis are presented in section 3. Here, we also present comparisons with more complex models and

observations. Finally, we draw some conclusions and give an outlook to future work.

2 Model

In this section we describe the development of a simple model, which is used for analytical and70

numerical investigations. We include the relevant processes for ice clouds in the temperature regime

T < 235K, namely ice nucleation, diffusional growth and sedimentation, respectively.

We start with the description of an ensemble of ice particles forming a cloud; for this purpose we

use a mass distribution f(m,x, t) with mass of particles, m, as internal coordinate and space, x,

and time, t, as external coordinates. (Notation follows the convention in population dynamics, see75

e.g. Ramkrishna, 2000). The procedure is similar to the derivation by Seifert and Beheng (2006) and

Beheng (2010). We investigate a test volume with a certain fixed mass of dry air, therefore f has

units [f ] = kg−1. Thus, we can formulate the evolution equation for f in a Boltzmann-type way:

∂(ρf)
∂t

+∇x · (ρuf) +
∂(ρgf)

∂m
= ρh. (1)

Here, ρ denotes density of air, u and g are the advection velocities in space and phase space of the80

internal coordinate and h represents sources and sinks for particles. Note, that all functions u, g, h,

generally depend on the full set of variables (m,x, t).

For the motion of the inertial system we assume a fluid velocity v = v(x, t), which is deter-

mined by the underlying hydrodynamic motion, governed by some versions or approximations of

Navier-Stokes equation. In addition, a single cloud particle might experience a diffusion velocity85

v′ = v′(m,x, t) relative to v. The total velocity u is thus given by

u(m,x, t) = v(x, t) +v′(m,x, t). (2)

Thus, we can reformulate equation (2) as follows:

∂(ρf)
∂t

+∇x · (ρvf) +∇x · (ρv′f) +
∂(ρgf)

∂m
= ρh. (3)

We have to state here that (even with this simplification) we will not be able to derive a general90

solution for f(m,x, t). However, since we are interested in bulk quantities as number and mass

concentrations, we use the definition of the general moments of f(m,x, t):

µk[m](x, t) :=

∞∫

0

f(m,x, t)mk dm, k ∈ R. (4)
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A bounded mass distribution is uniquely determined by all its integer moments (see e.g. Feller,

1971). For deriving equations for the evolution of moments, we multiply equation (3) by mk and95

integrate by parts, using f(0,x, t) = 0 and f(m,x, t)→ 0 for m→∞, which are physically reason-

able assumptions. Thus, we end with the following equation:

∂(ρµk)
∂t

+∇x · (ρvµk) +∇x ·




∞∫

0

mkρv′f dm


=

k

∞∫

0

mk−1ρgf dm +

∞∫

0

mkρhdm, k ∈ R. (5)100

The moments are not restricted to k ∈ N, instead we allow generalized moments with k ∈ R≥0.

Formally, the unit of the k-th moment is kgkkg−1.

Since we are interested in processes on cloud scale, we can neglect horizontal diffusion veloc-

ities; the remaining relative components of v′ are determined by sedimentation of particles, i.e.

v′ = (v′1,v
′
2,v

′
3) = (0,0,v′3) and v′3 = v′3(m,x, t). For simplicity, we assume that the gravitational105

acceleration of ice particles is very quickly balanced by friction of air, thus we can assume that v′3 is

represented by the terminal velocity of an ice particle with mass m, i.e. v′3 = vt(m). We can include

this simplification in the following way:

∂(ρµk)
∂t

+∇x · (ρvµk)
︸ ︷︷ ︸

time evolution + advection

=− ∂

∂z




∞∫

0

mkρvtf dm




︸ ︷︷ ︸
sedimentation

110

+k

∞∫

0

mk−1ρgf dm

︸ ︷︷ ︸
growth/evaporation

+

∞∫

0

mkρhdm.

︸ ︷︷ ︸
particle formation/elimination

(6)

We make the usual ansatz for a double moment scheme, i.e. k = 0,1 leading to two prognostic

equations for number concentration Nc = µ0 and mass concentration qc = µ1:

∂(ρµ0)
∂t

+∇x · (ρvµ0)115

=− ∂

∂z




∞∫

0

ρvtf dm)




︸ ︷︷ ︸
SEDn

+

∞∫

0

ρhdm

︸ ︷︷ ︸
NUCn

, (7a)

∂(ρµ1)
∂t

+∇x · (ρvµ1) =

− ∂

∂z




∞∫

0

mρvtf dm)




︸ ︷︷ ︸
SEDq

+

∞∫

0

ρgf dm

︸ ︷︷ ︸
DEPq

+

∞∫

0

mρhdm

︸ ︷︷ ︸
NUC q

. (7b)120
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Note the units of Nc and qc relative to the mass of dry air
(
[Nc] = kg−1, [qc] = kgkg−1

)
.

Now we will address the different terms in equations (7) in more details. First, we have to specify

the mass concentration in order to close the system of two moment equations mathematically.

2.1 Choice of distribution125

We prescribe a fixed type of mass distribution for the ice crystals, namely a lognormal-distribution

of the following form is considered:

f(m,t) =
Nc(t)√

2π logσm

exp


−1

2

(
log( m

mm
)

logσm

)2

 1

m
, (8)

with the geometric mean mass mm and the geometric standard deviation σm.

For this special distribution the k-th moment is given by130

µk[m] = Ncm
k
m exp

(
1
2

(k logσm)2
)

= Ncm̄
kr

k(k−1)
2

0 = N−k
c qk

c r
k(k−1)

2
0 . (9)

Here, we use the definition of the dimensionless parameter

r0 =
µ2µ0

µ2
1

= exp
(
(log(σm))2

)
(10)

for closing the set of equations. This parameter can also be formulated in terms of the “predom-135

inant mass” mpre = µ2/µ1 (Spichtinger and Gierens, 2009; Höller, 1986). In the following r0 is

assumed to be constant. Among others Spichtinger and Gierens (2009) suggest a value of r0 = 3,

corresponding to a geometric standard deviation σm ≈ 2.85.

2.2 Nucleation

For the formation of ice crystals we exclusively consider homogeneous freezing of aqueous solution140

droplets (e.g. Koop, 2004). Supercooled solution droplets freeze spontaneously with a nucleation rate

J . Similar as for ice particles we can describe the ensemble of solution droplets by a size distribution

fa = fa(r), where r denotes the radius. Again, we set [fa] = kg−1 and fa is normalised by the total

number concentration of aerosol particles, Na = µ0[r].

We model homogeneous freezing as a stochastic process with a rate J . For the change in the145

size distribution fa(r) we can formulate the following equation (acc. to Seifert and Beheng, 2006)

Assuming J as a volume rate (i.e. [J ] = m−3s−1):

∂(ρfa(r))
∂t

∣∣∣∣∣
freezing

=−4
3
πr3Jρfa(r). (11)
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Integration of the equation leads to an equation for the total loss of aerosol particles

∂(ρNa)
∂t

=−4
3
πρ

∞∫

0

r3Jfa(r)dr. (12)150

assuming a bijective relation between ice crystals and aerosol particles, we combine the total gain of

ice particles as:

∂(ρNc)
∂t

=−∂(ρNa)
∂t

=
4
3
πρ

∞∫

0

r3Jfa(r)dr =
4
3
πρJµ3,a[r], (13)

where µ3,a denotes the third moment of the size distribution of solution droplets. Here, we assume

that ∂J/∂r = 0, thus we can treat the integral as a constant.155

Since only a minor fraction of solution droplets is converted to ice, we can assume that the size

distribution will be constant in time. Thus, the third moment can be calculated as a constant, given

by the type and parameters of fa(r). We assume fa(r) as a lognormal distribution with a modal

radius of rm = 100nm, a geometric standard deviation σr = 1.5 and a total number concentration

ρNa = 3× 108m−3. Koop et al. (2000) give a parameterisation for the nucleation rate coefficient J160

as a function of ∆aw := aw − ai
w (Koop et al., 2000, Table 1, eq. 7). Here aw is the water activity

of the solution and ai
w is the water activity of the solution in equilibrium with ice. Note, that the

freezing characteristics of the droplets do not depend on the chemical composition. By definition the

water activity is the ratio esol/eliq of the vapor pressure over a solution, esol , and pure liquid water,

eliq . Neglecting the Kelvin effect and assuming that the solution droplets are in equilibrium with the165

environment (e = esol ), the water activity is proportional to the water activity in equilibrium with

ice, which is the ratio of the water vapour pressure over ice and pure liquid water:

aw =
esol

eliq
=

e

eliq
=

RH i

100%
ei

eliq
=

RH i

100%
ai

w. (14)

Both ei and eliq , only depend on temperature and are parameterised according to Murphy and Koop

(2005, eq. 7 and 10, respectively). Hence, ∆aw is a function of RH i and T , as given by170

∆aw(T,RH i) =
(

RH i

100%
− 1
)

ai
w(T )

=
(

RH i

100%
− 1
)

ei

eliq
. (15)

Therefore J is also a function of RH i and T .

The logarithm of the nucleation rate is parameterised by a third order polynomial in ∆aw (Koop

et al., 2000, table1, eq. 7):175

log10 J(T,RH i) =−906.7 +8502 ∆aw

− 26924(∆aw)2 +29180(∆aw)3. (16)
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With this, we can formulate the two terms for particle generation:

NUCn =
∂(ρNc)

∂t

∣∣∣∣∣
NUC

180

=
4
3
πρNaρexp

(
1
2

(3logσr)
2

)
J(RH i,T ) (17a)

and

NUC q = m0 NUCn, (17b)

using a typical droplet mean mass m0 = 10−15 kg in the spirit of the mean value theorem.

2.3 Depositional growth185

The growth of ice crystals is dominated by diffusion. The “advection velocity” g in the mass space

is given by the growth equation for a single ice crystal; this equation has the following form (see,

e.g., Stephens, 1983):

g(m) =
dm

dt
= 4πCD∗

vρ(qv − qv,si)fv. (18)

Here, qv,s = εpsi(T )/p denotes the saturation mixing ratio, the shape of the ice crystal is accounted190

for by the capacity C (assuming the electrostatic analogy, see e.g. McDonald, 1963; Jeffreys, 1918),

D∗
v is the full diffusion constant including the kinetic correction for small particles (Lamb and Ver-

linde, 2011) and fv denotes the ventilation coefficient.

In this study we make use of the following simplifications:

1. Latent heat release at the crystal surface is neglected and the temperature of the ice particles195

is assumed to be equal to temperature of ambient air.

2. We neglect kinetic corrections, since we are mostly interested in growth of larger crystals.

Thus, we can assume

D∗
v ≈Dv = D0

(
T

T0

)α(
p0

p

)
, (19)

with D0 = 2.11·10−5 m2s−1, T0 = 273.15K, p0 = 101325Pa, α = 1.94 (e.g. Pruppacher and200

Klett, 1997).

3. We neglet correction of ventilation, setting fv = 1. Since ventilation correction is relevant for

very large crystals, this is a reasonable assumption.

4. The shape of ice crystals, is assumed to be prolate spheroids with a length and an eccentricity

ε′, this leads to the following expression (McDonald, 1963):205

C = L
ε′

log
(

1+ε′
1−ε′

) . (20)
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For the mass-size relation we assume a simple power law L(m) = Cim
αi using Ci = 1.02m,

αi = 0.4, which was fitted to the more complex description in Spichtinger and Gierens (2009),

where a transition between droxtals and columns is formulated and used.

The fraction in equation (20) only depends weakly on the crystal mass and can be approximated210

by a constant mean value of 1/3. This yields

C =
1
3

Ci m
αi . (21)

Thus, we end with the simplified expression for g(m):

g(m)≈ 4
3
πCim

αiρ(qv − qv,si)

=
4
3
πCim

αiρqv,si(Si− 1), (22)215

using the saturation ratio Si = pv/psi and the saturation mixing ratio

qv,si(T,p) =
εpsi(T )

p
. (23)

Thus, we can derive the term DEPq in equation (7b) by integration, i.e.:

DEPq =

∞∫

0

ρg(m)f(m)dm

=
4
3
πCiρqv,si(Si− 1)µai [m] (24)220

=
4
3
πCiρqv,si(Si− 1)n1−αi

c qαi
c r

αi(αi−1)
2

0 .

2.4 Sedimentation

For the derivation of the terms SEDq, SEDn we use the mean value theorem for describing the

relevant integrals in equation (6) as follows:

∞∫

0

vt(m)ρmkf(m)dm = v̄k

∞∫

0

ρmkf(m)dm = ρv̄kµk. (25)225

Thus, we can describe the weighted terminal velocity v̄k for the flux of the k-th moment as

v̄k =
1
µk

∞∫

0

vt(m)mkf(m)dm. (26)

Here, we use a simple power law for the representation of the terminal velocity in addition with a

density correction term c(T,p), i.e.:

vt(m) = γmδc(T,p) (27)230
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where

c(T,p) =
(

p

p00

)ai
(

T

T00

)a2

, (28)

T00 = 233K, p00 = 300Pa, a1 =−0.178, a2 =−0.397 (see e.g. Spichtinger and Gierens, 2009) and

γ = 63292.36ms−1kg−δ , δ = 0.57. Thus, we obtain the weighted velocities for number and mass

flux, respectively, in the following form:235

v̄0 = v̄n = γ
µδ

µ0
c(T,p), (29a)

v̄1 = v̄q = γ
µδ+1

µ1
c(T,p). (29b)

We can formulate the general terms for sedimentation in the moment equations (7):

SEDn =
∂

∂z
(ρv̄nNc) =

∂

∂z
(ργµδ+1[m]c(T,p)) (30a)

SEDq =
∂

∂z
(ρv̄qqc) =

∂

∂z
(ργµδ[m]c(T,p)) . (30b)240

2.5 Additional settings

In order to formulate a consistent but simplified system of differential equations we make the fol-

lowing assumptions:

1. Instead of an Eulerian point of view we change to a Lagranian viewpoint , i.e. the Eularian

time evolution and advection in the fluid motion,245

∂(ρφ)
∂t

+∇x · (ρvφ) , (31)

can be seen as total time derivative d(ρφ)
dt . Note that motions relative to the Lagranian evolution

are still included, i.e. sedimentation still plays a role.

We will generally focus on the development inside a prescribed parcel, thus the Langranian

description is adequate. We will exclusively consider vertical motions of the air parcel as250

driven by a vertical velocity component w, i.e. v = (0,0,w(t)). Vertical motion of the air

parcel will lead to adiabatic processes, i.e. compression or expansion, leading to tempera-

ture/pressure changes dT
dt , dp

dt assuming hydrostatic balance, we can explicitly describe the

temperature/pressure rates:

dT

dt
=

dT

dz

dz

dt
=− g

cp
w (32)255

dp

dt
=

dp

dz

dz

dt
=−gρw. (33)

2. In our study, we will exclusively consider very low vertical velocities or vertical changes

with limited amplitude. Thus, we can approximately assume that temperature and pressure

9
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are constant. In consequence, we also keep the volume of our air parcel constant and due to

the ideal gas law, density remains constant, too. Hence, ρ drops out in equation (1) and all260

equations derived from it. At an updraught velocity of w = 2 · 10−2ms−1, temperature would

decrease by 0.7 K per hour, meaning that after twelve hours the temperature difference would

be about 8 K. However, we are not primarily interested in a highly accurate model, but rather

a model that is as simple as possible, describes the aspects of the mechanism qualitatively.

Finally, we can use this assumption for approximating the sedimentation terms. We have to265

consider terms of the form

∂

∂z
(ρv̄kµk) k = 0,1, (34)

i.e. vertical changes in the sedimentation flux, jk = ρv̄k,µk. Since the volume does not change

we assume a box with volume V = A ·∆z with constant vertical extension ∆z and constant

base area A. The sedimentation flux jk is perpendicular to the surface of the base area. To270

avoid a hyperbolic term in our equations, we approximate the vertical change of the flux by

centered differences:

∂

∂z
jk ≈

1
∆z

(
jtop
k − jbottom

k

)

=
1

∆z

(
(ρv̄kµk)top− (ρv̄kµk)bottom

k

)
. (35)275

We investigate the top layer of a cloud, therefore by definition jtop
k = 0. Hence, we can write:

SEDn =−ρv̄Nµ0

∆z
=−ργ

µδ

∆z
c(T,p) (36a)

SEDq =−ρv̄qµ1

∆z
=−ργ

µδ+1

∆z
c(T,p). (36b)

Since we are mostly interested in the top cloud layer, where ice nucleation occurs (see, e.g.,

Spichtinger and Gierens, 2009), we set the thickness of the cloud layer to ∆z = 50m.280

To close the systems of differential equations we introduce an evolution equation for relative

humidity, starting with the total derivative of RH i = pqv/(εpsi(T )):

dRH i

dt
=

∂RH i

∂T

dT

dt
+

∂RH i

∂p

dp

dt
+

∂RH i

∂qv

dqv

dt
. (37)

The ascent of the air parcel is purely adiabatic and no diabatic effects are taken into account. Thus,

the first two contributions are given by:285

∂RH i

∂T

dT

dt
= RH i

Mair

RT 2
Lice ·

g

cp
w, (38a)

∂RH i

∂p

dp

dt
=

RH i

p
· ρgw =−RH i

Mair

RT
gw, (38b)

making use of equation (23), the dry adiabatic lapse rate, and the hydrostatic equilibrium. Mair is

the molar mass of dry air and Lice is the molar heat of sublimation; we use the parameterisation

10
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for Lice by Murphy and Koop (2005). As usual, g denotes the gravitational acceleration and cp is290

the isobaric heat capacity of air. Since these two expressions account for the change of RH i due

to adiabatic cooling they are subsumed under COOLRH . Note that using assumption 2, we only

consider temperature/pressure changes in equation (38), but leave temperature and pressure constant

otherwise. Therefore, we do not include the equations for dT/dt and dp/dt in our ODE system of

the model. This approach will be useful for analytical investigations.295

The last term in equation (38) represents the sink due to diffusional growth of ice particles and is

denoted as DEPRH , i.e.:

DEPRH =
∂RH i

∂qv

dqv

dt
=−∂RH i

∂qv

dqc

dt

=−∂RH i

∂qv
· 1
ρ
DEPRH

=−4
3
πρDvCi(RH i− 100%)r

αi(αi−1)
2

0 N1−αi
c qαi

c (39)300

2.6 System of ODEs

In summary, the full system of the model equations reads:

dNc

dt
=

4π

3
na

ρ
r3
m exp

(
1
2

(3ln(σr))
2

)
J(RH i,T )

− γ c(T,p)
∆z

r
δ(δ−1)

2
0 N1−δ

c qδ
c (40a)305

dqc

dt
= m0

4π

3
na

ρ
r3
m exp

(
1
2

(3ln(σr))
2

)

·J(RH i,T )− γ c(T,p)
∆z

r
δ(δ+1)

2
0 N−δ

c q1+δ
c

+περDvCi
ei

p

(
RH i

100%
− 1
)

r
αi(αi−1)

2
0 N1−αi

c qαi
c (40b)310

dRH i

dt
= RH igw

Mair

RT

(
Lice

cpT
− 1
)

−πρDvCi(RH i− 100%)r
αi(αi−1)

2
0 N1−αi

c qαi
c . (40c)

This is an autonomous system of ordinary differential equations. For better readability the equations315

are abbreviated:

ẋ = F (x), with x = (Nc, qc,RH i)T , (41)

and F the right hand side of (40). Note that the assumption of constant temperature, pressure and

vertical velocity ensures that the system (40) possesses critical points.

320
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3 Results

3.1 General features

We examine the system for a range of parameter values 0 < w ≤ 0.05ms−1 and 190K≤ T ≤ 230K,

at a pressure of p = 300hPa, which corresponds to upper tropospheric conditions with moderate ver-

tical motions as in synoptic weather situations or slow upward motions in the tropics (e.g. Kelvin325

waves). The air parcel is initialized with no ice particles (Nc(0) = 0, qc(0) = 0) and at high supersat-

uration w.r.t. ice (RH i(0) = 140%). The prognostic equations (40) are integrated numerically using

the LSODA algorithm from the Fortran library ODEPACK (Hindmarsh, 1983).

The general cloud formation mechanism works as follows: The adiabatic cooling causes the rel-

ative humidity, and thus the nucleation rate, to rise until the freezing probability is high enough to330

allow ice nucleation. This corresponds merely with a threshold in relative humidity. According to

Ren and Mackenzie (2005), this threshold might be expressed as RH i,crit = (2.349−T/259)·100%,

i.e. RH i,crit ≈ 140–150%. The stronger the dynamical forcing w, the stronger the nucleation event

and the more ice particles form. Ice particle growth then reduces the relative humidity and hence

the freezing rate is also reduced (see equation (37), last term). The crystals, that have become large,335

fall out, thus sedimentation reduces the ice crystal concentrations, which causes relative humidity to

further increase. In fact, sedimentation is the key process, which leads to different states in the cloud

evolution. The system exhibits two qualitatively distinct behaviours, depending on the parameter

values of w and T .

State 1: At rather high temperatures and slow vertical velocities, the three competing microphys-340

ical processes are relatively slow and act on similar time scales so none of them is dominant. In

particular, freezing rates are rather small in these cases, therefore only few ice crystals are formed

initially. The three processes are more or less in balance, resulting in a damped oscillation in all three

variables, finally asymptotically reaching an equilibrium state in numerical integrations of equations

(40), as shown in figure 1. Note, that in this state, nucleation is occurring continuously, as rela-345

tive humidity remains above the freezing threshold at all times and thus the nucleation rates are high

enough to produce ice crystals. This results in smooth oscillations instead of sharp nucleation events.

If the air parcel is not disturbed and the vertical updraught remains unchanged, the cloud that forms

will persist and will have constant microphysical properties. The cloud in the steady state typically

contains low crystal concentrations. The dynamic equilibrium remains at high supersaturations, i. e.350

is far from thermodynamic equilibrium. The cloud properties are discussed quantitatively in section

3.3 in more detail.

State 2: When increasing w or decreasing T , respectively, to a certain level, there is no damping

and stationarity is not reached anymore (see figure 2) because the processes are not in balance in

this case. Instead, we obtain pulse-like nucleation with distinct nucleation events and the nucleation355

rates fall far below the critical rates at RH i,crit . The amplitude of the oscillation is very large in
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all variables and the ice particle concentration is reduced to a small fraction of the maximum value

once in a period. At colder temperatures and faster vertical velocities, the nucleation rates are much

higher, so freezing is the dominant process in the beginning. After a while, ice crystal growth be-

comes dominant and when the crystals have become large, sedimentation sets in and crystal numbers360

decrease rapidly. Finally, the cycle starts over. In this case, the freezing events are clearly separated,

as opposed to the first case. In the beginning, the amplitude in the three variables decreases slightly

from one event to the next, but after a while, the amplitude stays constant. The system reaches a

limit cycle, through which it passes over and over periodically. This kind of scenario was observed

in former studies (e.g. Spichtinger and Cziczo, 2010; Kay et al., 2006).365

In the following section, we conduct a classical dynamical system analysis of the ODE system

(41). Then, we discuss the properties of the modeled cloud and compare it to other models and

observations.

3.2 Mathematical analysis

In a first step, the dynamical system (41) can be characterised by its critical points x0, i.e. the values370

where F (x0) = 0. Since the system is autonomous the critical points are equilibrium points. The

critical points of the system cannot be determined analytically. However, under the assumption that

the nucleation term NUC q for qc is negligible (it is several orders of magnitude smaller than the

other terms in equation (40b)), it is possible to rearrange the equations (without losing any positive

solutions) in a way that only one equation for RH i has to be solved numerically. The critical values375

of Nc and qc can be derived analytically from that. This equation reads:

4π

3
na

ρ
r3
m exp

(
1
2

(3ln(σr))
2

)
J(RH i,T )

=
γc(T,p)gwMair (Lice/cp− 1)

∆zRTπρCi
· r

δ
2 (δ−1)(αi−1)−αi

2 (αi−1)
0

·
(

περDvCiei∆z

γc(T,p)pi
·
(

RH i

100%
− 1
))δ−αi RH i

RH i− 100%
. (42)380

Equation (42) has a unique solution because the left-hand side is a strictly monotonic increasing

function of RH i and the right-hand side is strictly monotonic decreasing. Therefore, there exists a

unique critical point, x0, in the relevant domain of the phase space (RH i > 100%, Nc > 0, qc > 0).

In order to examine the qualitative behaviour of the solution in a neighbourhood of the equilibrium

state, the ODE system is linearised about the critical point x0:385

ẋ = F (x0) +DF
∣∣
x0

(x−x0) +O(|x−x0|2), (43)

where DF|x0 is the Jacobian of F evaluated at the point x0. The three eigenvalues of the Jacobian,

λ1,λ2,λ3, determine the quality of the critical point (Verhulst, 1996, Chapter 3). The Jacobian of

the system has two complex conjugate eigenvalues, λ1 and λ2, whose real part can be positive or

negative, depending on the parameters, w and T . The third eigenvalue, λ3 ∈ R, is always negative.390
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If the real part of the complex conjugate eigenvalues is negative (Re(λ1) = Re(λ2) < 0), the crit-

ical point is a positive attractor in equation (43), which means that a solution that starts in a neigh-

bourhood of x0 will asymptotically converge to x0 (Verhulst, 1996). This corresponds to state 1, i.e.

the damped oscillation where the system reaches stationarity. According to the Poincaré-Lyapunov

theorem (Verhulst, 1996, theorem 7.1), positive attraction in the linearised system is also valid for395

the full non-linear system. Therefore, x0 is asymptotically stable and acts as a positive attractor in

equation (41) in state 1 (damping state). Figure 3 shows the trajectory of a solution of the system

(40) in the 3D phase space, spiralling towards the equilibrium point, i.e. the positive attractor.

In case of undamped oscillation (state 2), the real part of the complex eigenvalues is positive

(Re(λ1) = Re(λ2) > 0).400

The transition from positive attractor to limit cycle is a so called Hopf bifurcation (Verhulst, 1996)

and is associated with a transition from two conjugate complex eigenvalues with negative real part

to two conjugate complex eigenvalues with positive real part, via two purely imaginary eigenvalues.

The bifurcation diagram is a line in w-T -space that separates the two regimes positive attraction vs.

limit cycle (see figure 5). The bifurcation points were identified numerically using the eigenvalue405

criterion, Re(λ1) = Re(λ2) = 0.

The limit cycle was determined numerically by computing the Poincaré map of the system (Ar-

gyris et al., 2010; Verhulst, 1996). Choose a two-dimensional plane Σ in the phase space, which is

transverse to the trajectory of the solution of equation (41); Σ is called Poincaré section. The se-

quence of points in the phase space where the trajectory crosses Σ converges numerically to the the410

point on the limit cycle that is in Σ. Once we find one such point on the limit cycle, we can use it as

the initial condition in (41) to compute the complete limit cycle. However, since this method requires

numerical integration of equation (41), it is not of further interest for the analytical investigation.

3.3 Discussion of results

In the “attractor” regime, i.e. state 1 of the system, the critical point corresponds to the equilibrium415

values within the finally persisting cloud. Hence, in this parameter regime, we describe the properties

of the modeled cloud by the values of the system variables at the critical point. For the “limit cycle”

regime, the critical point does not describe the changing properties of the cloud since it is only in the

centre of the periodic orbit and the trajectory does not approach it. A more revealing measure for the

cloud properties in this regime is a probability density of the values the variables take in the limit420

cycle, or at least median, maximum and minimum values.

Figure 6 shows ice crystal mass and number concentrations, respectively, at the critical point, x0,

as a function of vertical velocity (qc(w), Nc(w)) for different temperature regimes. The solid lines

in both panels correspond to state 1 (attractor regime), whereas the dashed lines indicate the values

at the critical point, x0, for state 2 (limit cycle regime); note that for state 2, x0 is an unstable focus.425
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Ice crystal number concentrations at the critical point take values in the range 3×102 kg−1 ≤Nc ≤
2× 105 kg−1 (figure 6, top), which corresponds to ice crystal number densities of 0.1L−1 ≤ nc ≤
110L−1. Ice crystal mass concentration ranges between 4× 10−9 ≤ qc ≤ 3× 10−6 kg kg−1 (figure

6, bottom). This corresponds to an ice water content of 2.2× 10−9 ≤ IWC ≤ 1.4× 10−6 kgm−3.

As expected from theory and from former numerical investigations (e.g. Kärcher and Lohmann430

(2002)), the ice crystal number concentrations display a strong increase with rising vertical velocity.

Due to increased crystal growth rates at higher temperatures, Nc decreases with rising T .

In the double logarithmic representation in figure 6, the number concentrations Nc(w) at x0

appear as straight lines. For different temperature regimes, there seems to be a constant shift between

the curves Nc(w) (i.e. a constant factor c(T)), leading to parallel lines in the double logarithmic435

representation.

For the limit cycle regime (state 2), we can still derive the values of mass and number concen-

trations at the critical point, x0. However, since this point is unstable and is never reached, another

representation is needed to describe the range of ice crystal concentrations. As indicated in figures

5 and 6, the limit cycle behaviour occurs for temperatures T < 230K for the investigated updraught440

regime 0≤ w ≤ 0.05ms−1. Thus, in figure 7 we represent maximum, median and minimum val-

ues for ice crystal number concentrations (dashed lines) in the limit cycle regime for temperatures

T = 190, 200, 210, 220K. In addition, the ice crystal number concentration at the critical point, x0,

is displayed. We observe a large variation in the number concentrations of up to two orders of mag-

nitude. This behaviour is reasonable since sedimentation reduces the amount of ice crystals in a445

dominant manner, while new ice crystals are formed by nucleation in a pulsating way.

The mass concentration of the ice crystals is largely determined by diffusional growth. As indi-

cated in the model description (section 2), this term depends on temperature and also on number

concentration, leading again to an exponential behaviour as represented in figure 6 (bottom) and to

a constant factor between the different temperatures, represented as parallel lines.450

For the attractor regime, we can directly investigate the mean mass of the ice crystals, m = qc/Nc,

at x0, which is displayed in figure 8. The variation of m at the critical point due to the vertical

velocity is marginal, as indicated in the figure. Thus, we can assume that m can be approximated by a

function of temperature. The mean mass at x0 ranges between m∼ 10−12 kg and m∼ 2×10−10 kg,

which corresponds to mean sizes between L∼ 16µm and L∼ 134µm. For the limit cycle regime455

(state 2), we indicate the variation in the mean mass by box and whiskers plots, displaying the median

value (red markers) as well as 25/75% percentiles and minimum/maximum values. Note here that

variation of mean mass is usually of one order of magnitude. For cold temperatures the variation is

larger due to a higher variability in ice crystal number concentration (see figure 7), whereas the mass

concentration in ice clouds is mainly dominated by available water vapour.460
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3.4 Comparison with other simulations

For comparison with a more complex and realistic model we carry out simulations with the boxmodel

as described by Spichtinger & Gierens (2009) and Spichtinger & Cziczo (2010). In the following this

model is termed “complex model”. We scan through the T -w parameter space using initial tempera-

tures in the range 190≤ T ≤ 235K with a temperature increment of ∆T = 5K and vertical veloci-465

ties in the range 0.005≤ w ≤ 0.05ms−1 with a velocity increment of ∆w = 0.005ms−1, leading to

90 simulations. Additionally, we fixed initial conditions p = 300hPa and RHi = 140%. The results

of these simulations are very similar to the results of the analytical model.

We can again identify regimes in the T -w parameter space showing the known two different

states, i.e. damped oscillations (state 1) and limit cycle behaviour (state 2). In figure 9 the case of470

damped oscillation is shown in both model simulations. Here, initial temperature of T = 220K is

used with a vertical velocity of w = 0.01ms−1. Green lines indicate the evolution in the complex

model simulation, whereas blue lines represent the evolution in the simple analytical model. Both

model simulations agree quite well. For the variables number and mass concentration both models

produce almost the same values, however the values for relative humidity are slightly lower for the475

simple model simulation. In fact, the onset of ice nucleation is shifted between the two models due

to differently detailed representation of ice nucleation in both models. This leads to the difference in

relative humidity values. Qualitatively, the models agree very well, the oscillation periods are very

similar and also the damping is almost the same. Note that the agreement between the models is

not always that good for all parameter values; however, the model results for variables ice mass and480

number concentrations, respectively, always agree within less than one order of magnitude.

For the complex model simulations the environmental conditions change, i.e. temperature and

pressure are decreasing due to adiabatic expansion. Thus, no steady state can be reached. The values

for ice crystal number concentrations and relative humidity are slightly rising with time in the quasi

steady state at the end of the simulation. Ice crystal mass concentration is slightly decreasing. Gen-485

erally, we can say that for state 1 (damped oscillations) the agreement between the respective two

model simulations is very good; this holds for all cases of damped oscillations.

In figure 10 a case of limit cycle behaviour is shown. As in figure 9, green lines indicate the

complex model simulations and the simple model results are represented by blue lines, respectively.

The initial conditions for both models are given by T = 210K and w = 0.02ms−1. Again, we find490

very good agreement in the cloud variables Nc, qc between both model simulations. There is again

a shift in relative humidity due to the representation of ice nucleation in the different models. The

limit cycle behaviour is present in both simulations; qualitatively they also agree very well in terms

of the periods of the oscillations. Again, we have to state that the agreement is not always that good

in the absolute values of variables as in this represented case. However, qualitatively the limit cycle495

cases agree very well.
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The bifurcation diagram as represented in figure 5 cannot completely be reproduced by the com-

plex simulations. For initial conditions close to the boundary between state 1 and state 2 we observe

a different behaviour. Since the complex model includes changes in temperature, the parameters

are changed during the simulations. For instance, the simulation starts in the regime of a damped500

oscillation (e.g. high temperature vales at low updraughts) and the time evolution follows first this

(theoretical) kind of time evolution. However, the temperature change leads to a path in the phase

diagram (figure 5) and at some stage the boundary between the two states is crossed. Now, a different

scenario, namely limit cycle behaviour, should be present. In fact, if the oscillations are not already

damped out, we can observe in the simulations that after crossing the bifurcation line in figure 5505

the complex model simulations then exhibit a limit cycle behaviour. An example for this situation is

given in figure 11. Here, we show a long simulation with the complex model for initial conditions

T = 225K and w = 0.035ms−1; thus, as shown in the phase diagram (figure 5), the model starts

in the regime of damped oscillations. In the time evolution, we can see the damped oscillation very

clearly for up to about four hours. At this time, the temperature is about T ∼ 220K and according to510

the phase diagram there is the transition to the limit cycle behaviour. In the further time evolution,

the limit cycle behaviour is present, i.e. the oscillations are not damped but in contrast the ampli-

tude in variables Nc, qc and relative humidity increases slightly. After further cooling, we observe

that the period of the oscillations changes as well, since the period of the limit cycle depends on

environmental conditions. Thus, we can conclude that for realistic simulations including changes515

in environmental conditions there could be transitions between the theoretically determined states.

However, the behaviour of the actual states can still be explained by the phase diagram as obtained

from our analytical considerations.

Comparison with theoretical results by Kärcher (2002) shows good agreement as well. Actually,

in our investigations with the simple analytical model we found low ice crystal number concentra-520

tions similar to results by Kärcher (2002); the dependence of number concentrations on w and T

also agrees very well with analytical considerations by Kärcher (2002). However, our approach goes

beyond the results by Kärcher (2002) since we allow for sedimentation of ice crystals. This addi-

tional process leads to the oscillatory behaviour in both cases, the damped oscillation in the attractor

case (state 1) as well as the undamped oscillation in the limit cycle case (state 2). Especially the525

continuous nucleation in the state 1 scenario (damped oscillation) is only possible if we allow for

sedimentation of ice crystals. Otherwise, the nucleation event would stop after depositional growth

has reduced the supersaturation such that nucleation rates become negligible. Thus, we can state that

our scenarios might be more realistic, although the microphysical poperties in both studies are quite

similar.530
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3.5 Comparison with observations

For comparison with observations we focus on in situ measurements of ice crystals in subvisible

cirrus clouds. Since it is very difficult to measure low number concentrations, only few measurement

studies are available. We compare our results with measurements by Kübbeler et al. (2011), Lawson

et al. (2008) and Davis et al. (2010).535

Our model results lead to ice crystal number concentrations in the range 0.1L−1 ≤ ρNc ≤ 110L−1

and mean ice crystal sizes in the range ∼ 16µm≤ L≤ 134µm. Note, that the variation in number

concentrations span over three orders of magnitude and the variation in mean sizes is still within

two orders of magnitude. These values agree quite well with the measurements. Kübbeler et al.

(2011) indicated quite high number concentrations in order of ∼ 100L−1 for small ice crystals540

(L∼ 10µm) but quite low number concentrations 0.1≤ ρNc ≤ 10L−1 for large ice crystals (equiv-

alent radius r > 50µm). Lawson et al. (2008) reported ice crystal number concentrations in the range

22.5≤ ρNc ≤ 188.8L−1 with mean value and standard deviation 66± 30.8L−1 for ice crystals in

the size range 1≤ L≤ 200µm. Finally, Davis et al. (2010) reported very low ice crystal number con-

centrations with a mean value of 2L−1 and mean sizes of 14µm during the tropical measurement545

campaign TC4. However, in their study values from former measurement campaigns are reported

to be in the range 10≤ ρNc ≤ 100L−1 and for effective radii 10≤ r ≤ 20µm. Overall we can state

that regarding the high spread in the measurements our results from a simple analytical model agree

quite well with in situ measurements.

Actually, from in situ measurements, which constitute an Eulerian point of view by definition, we550

cannot decide in which of the possible states (attractor regime vs. limit cycle) the observed cloud

might be. We also have to keep in mind that in reality the motion of air parcels might be disturbed

by small scale turbulence or other dynamical effects.

4 Conclusions

In this study we develop an analytical model for describing subvisible cirrus clouds in the tropopause555

region from first principles starting with a Boltzmann-type equation for the evolution of a cloud

mass distribution. The model consists of a set of ordinary differential equations for the variables

ice crystal mass and number concentration as well as relative humidity with respect to ice. The

model contains the relevant cloud processes ice nucleation, diffusional growth and sedimentation,

respectively. The forcing terms are non-linear and the whole system is autonomous. We use this560

model for numerical simulations as well as for mathematical analysis, applying theory of dynamical

systems. In the analysis we can show that there are two qualitatively different states in the long-term

evolution of the model. The two states are (a) a positive attractor and (b) a limit cycle for the cloud

variables. Thus, we find a Hopf bifurcation, which is characterized by the change of the real part

of the two conjugate-complex eigenvalues from negative values to positive values via two purely565
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imaginary eigenvalues. The transition between the states is determined by the parameters vertical

velocity w and environmental temperature T .

The microphysical properties of the cloud in both states are similar and depend mostly on the

environmental conditions as vertical velocity and temperature. However, for the limit cycle case the

spread in ice crystal mass and number concentration is obviously larger than in the attractor case.570

For the equilibrium point the mean mass depends only slightly on vertical velocity, thus we can

approximate the mean mass as a function of temperature.

The comparison with a complex boxmodel by Spichtinger and Gierens (2009) shows very good

agreement. In fact, the qualitative behaviour as determined for the analytical model can also be found

for the complex model simulations. Also in a quantitative way both models agree quite well.575

Comparison with former analytical investigations by Kärcher (2002) shows also good agreement

with our model. However, since we include sedimentation in our model, our results go clearly beyond

the former investigations; the long-term behaviour is different, since the inclusion of sedimentation

crucially leads to the bifurcation, depending on environmental conditions.

Since there are only a few in situ measurements of subvisible cirrus available, it is quite difficult580

to carry out solid comparisons. However, we try to compare with measurements as described by

Kübbeler et al. (2011), Lawson et al. (2008), and Davis et al. (2010) and find good agreement with

our results.

Thus, we can summarize that homogeneous freezing of aqueous solution droplets at low temper-

atures (T < 235K) might be a possible candidate for formation of ice crystals und slow updraught585

conditions, leading to very thin or subvisible cirrus clouds. The final state of the cloud in the long-

term behaviour is very similar for both cases. Therefore, we cannot decide from values of micro-

physical properties in a certain range in which state the cloud might be. Even if we had more mea-

surements, we probably would not be able to decide between the two states just using the Eulerian

measurements without a Lagrangian point of view.590

Finally, we can state that we could develop a meaningful minimal model for describing the main

features of subvisible cirrus clouds. Former investigations using boxmodels indicated that there

might be different regimes in the behaviour of the clouds for longer simulation times. For instance,

in studies by Kay et al. (2006) and Spichtinger and Cziczo (2010) oscillatory behaviours as well as

attractors could be seen. However, only a detailed mathematical analysis could show that there is a595

bifurcation in the long-term behaviour and that it depends mostly on environmental parameters as

updraught velocity and temperature. This analysis was only possible, since we developed an analyt-

ical model, which is close enough to complex models but is also simple enough for mathematical

analysis.

The determined Hopf bifurcation in addition with the two different states show that clouds might600

show inherent structures, which are crucially determined by the microphysical cloud processes them-

selves in addition to environmental conditions. Similar structure formation was already seen in ana-
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lytical cloud models for liquid and mixed-phase clouds as developed by Wacker (1992, 1995, 2006)

or Hauf (1993). Investigations and analysis of the microphysical processes in terms of sets of or-

dinary differential equations are a first but urgently necessary step in order to investigate structure605

formation inside clouds. Once we understand the possible structures in clouds as determined by mi-

crophysics, we can proceed further in order to investigate further structure formation as driven by

diffusion processes and others, leading to spatial structures of clouds.

Last but not least we would like to note that simple models as the derived minimal model of

subvisible cirrus clouds might also serve as prototypes for new generation of cloud parameterisations610

in large-scale models; since these models describe the structure of clouds in terms of cloud variables

and environmental conditions, these models might be used for describing such structures embedded

into a coarse grid model. However, further research in this direction is necessary in order to proceed

from pure model prototypes to meaningful cloud parameterisations.
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Figure 1. Here, a scenario in state 1 (damping) is shown at w = 0.01ms−1 and T = 220K. The continuous

nucleation as well as similar time scales of nucleation, growth and sedimentation lead to a damped oscillation

with an equilibrium state for t > 7 h. In the phase space, the attractor property is visible (see figure 3).
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Figure 2. Here, a scenario in state 2 (limit cycle) is shown at w = 0.02ms−1 and T = 210K. Nucleation

events occur as pulses, thus an undamped oscillation evolves, which describes a limit cycle in the phase space

(see figure 4).)
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Figure 3. Positive attractor for state 1 at T = 220K, w = 0.01ms−1: orbit in the phase space approaching the

equilibrium point.
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2).
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Figure 7. Ice crystal number concentrations for different temperature scenarios (T = 190, 200, 210, 220K).

The solid line represents values at the critical point x0. For the limit cycle regime the range of ice crystal

number concentrations is indicated by the shaded area bounded by minimum and maximum values for the

updraught range 0.001≤ w ≤ 0.05ms−1; the median is indicated by the dashed line.
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0.001ms−1 ≤ w ≤ 0.05ms−1. Additionally, box and whiskers plots indicate median, 25%, 75% percentiles,

and minimum/maximum values, respectively, for the limit cycle regime.
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Figure 9. Attractor case (state 1): Comparison between simple box model and the complex model by

Spichtinger and Gierens (2009). w = 0.01ms−1, temperature in the simple model and start temperature of

the complex model is T = 220K.
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Figure 10. Limit cycle case (state 2): Comparison between simple box model and the complex model by

Spichtinger and Gierens (2009). w = 0.02ms−1, temperature in the simple model and start temperature of the

complex model is T = 210K.
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Figure 11. Transition between attractor regime (state 1) and limit cycle regime (state 2): Simulation with the

complex model by Spichtinger and Gierens (2009) for w = 0.035ms−1 and start temperature: T = 225K.

During the first two hours of simulations, the attractor characteristics can be clearly seen. After reaching tem-

peratures of about T ∼ 220K, the regime changes from state 1 (attractor) to state 2 (limit cycle), see also phase

diagram in fig. 5. after this transition, the amplitudes of number concentrations and relative humidity w.r.t. ice

increase and at the end of the simulation also a shift in the oscillation period can be seen due to temperature

change.
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